Категории и разделы. Понадобится: 3 кг спелых...
Все новости
Войти на сайт
Логин:
Пароль:
Регистрация  |  Пароль?  |  Закрыть
у нас можно скачать программы бесплатно или Рецензия на Последняя фантазия духи, а так же качественные шаблоны dle без регистрации

Дипломная работа: Состав строительных материалов

Опубликовал: admin | Дата: 31.12.16 |
(голосов: 0)

Дипломная работа: Состав строительных материаловДипломная работа: Состав строительных материалов.

--PAGE_BREAK--Неорганические пористые заполнители отличаются большим разнообразием, их подразделяют на природные и исскуственные. Природные пористые заполнители получают путем частичного дробления и рассева пористых горных пород (пемзы, вулканического туфа, известняка-ракушечника и др.). Искусственные пористые заполнители являются продуктами термической обработки минерального сырья и разделяются на специально изготовленные и побочные продукты промышленности (топливные шлаки и золы, отвальные металлургические шлаки и др.). Керамзитовый гравий изготавливают путем обжига гранул, приготовленных из вспучивающихся глин. Это легкий и прочный заполнитель. Его объемная насыпная масса колеблется от 250 до 800 кг/м3. В изломе гранула керамзита имеет структуру застывшей пены. Спекшаяся оболочка, покрывающая гранулу, придает ей высокую прочность. Керамзитовый песок (зерна до 5 мм) получают при производстве керамзитового гравия (правда, в небольших количествах), а так же по методу кипящего слоя обжигом сырья во взвешенном состоянии. Кроме того, его можно получать дроблением некондиционного продукта – зерен гравия размером более 40 мм и сваров. Шлаковую пемзу изготавливают на металлургических заводах путем быстрого охлаждения расплава металлургических (обычно доменных) шлаков, приводящего к вспучиванию. Куски шлаковой пемзы дробят и фракционируют, получая пористый щебень. Гранулированный металлургический шлак получают в виде крупного песка с пористыми зернами размером 5–7 мм, иногда до 10 мм в результате быстрого охлаждения расплава металлургических шлаков. Вспученный перлит изготавливают путем обжига вулканических стеклообразных пород (перлитов, обсидианов), которые содержат небольшое количество воды. При температуре 950–12000С вода выделяется и перлит увеличивается в объеме в 10–20 раз. Вспученный перлит применяют для получения легких бетонов и теплоизоляционных изделий. Вспученный вермикулит – пористый сыпучий материал, полученный путем обжига водосодержащих слюд. Этот заполнитель используют для изготовления теплоизоляционных легких бетонов. Топливные отходы (топливные шлаки и золы) образуются в качестве побочного продукта при сжигании антрацита, каменного угля, бурого угля и других видов твердого топлива. На основе зол выпускают зольный и глинозольный гравий. Аглопорит получают при обжиге глиносодержащего сырья с добавкой 8–10% топлива на решетках агломерационных машин. Каменный уголь выгорает, а частицы сырья спекаются. Производство аглопорита выгодно, когда для его изготовления применяют местные виды сырья: легкоплавкие глинистые и лёссовые породы, а также отходы промышленности – золы, топливные шлаки и углесодержащие шахтные породы. Аглопорит выпускают в виде пористого песка и щебня. Шунгизит изготовляют обжигом шунгитовых сланцевых пород. Наивыгоднейшее сочетание показателей объемной массы, теплопроводности, прочности и расхода цемента для легких бетонов получают при наибольшем «насыщении» бетона пористым заполнителем, что возможно лишь при компактном размещении зерен заполнителя в объеме бетона. Тогда в бетоне будет меньше цементного камня, являющегося самой тяжелой частью легкого бетона, и снизится его теплопроводность. Наибольшее насыщение бетона пористым заполнителем возможно только при правильном подборе зернового состава смеси мелкого и крупного пористых заполнителей, а также при использовании ряда технологических факторов (интенсивного уплотнения, пластифицирующих добавок и др.). Ячеистое стекло – блоки и плиты, получаемые из измельченного в порошок стекла (стеклянного боя, эрклеза) в смеси с газообразователем (известняком, антрацитом) и при обжиге 900–10000С. Марки по средней плотности 200 и 300; теплопроводность при температуре 250С – 0,09 – 0,10 Вт/(м•К), предел прочности при сжатии 0,5–3,0 МПа. Плиты имеют пористость до 80–140 мм. Их применяют в качестве теплоизоляции ограждающих конструкций зданий (вкладыши в стеновых панелях). Они поглощают не только теплоту, но и звуковые волны. Ячеистые бетоны и силикаты применяют в качестве теплоизоляционных материалов и изделий при средней плотности ниже 400 кг/м3. По виду примененного порообразователя и вяжущего вещества их называют газобетонами, газосиликатами, пенобетонами, пеносиликатами. Эти бетоны могут быть со смешанным порообразователем и тогда их называют пеногазобетонами, пеногазосиликатами, керамзитобетонами и т.п. Из ячеистых бетонов обычно изготовляют плиты длиной до 1000 мм, шириной 400, 500, 600 мм, толщиной 80–240 мм. Их марки по средней плотности 350 и 400 кг/м3, а предел прочности при сжатии для изделий первой категории качества не менее 0,7–1 МПа и ? 0,8–1 МПа для изделий высшей категории качества; теплопроводность в сухом состоянии при температуре 250С составляет 0,093–0,104 Вт/(м•К) и менее. Плиты из ячеистых бетонов применяют для теплоизоляции стен и перекрытий, укрытия поверхностей заводского оборудования и трубопроводов (пластичные бетоны и растворы). Асбестовые и асбестосодержащие теплоизоляционные материалы представлены асбестовой бумагой, картоном, шнурами разного диаметра и пр. плитами, скорлупами, сегментами и др. мастичными изоляциями с применением порошков. Штучные асбестоцементные теплоизоляционные изделия изготовляют из смеси распушенного асбеста V и VI и сортов цемента не ниже марки 300 с помощью прессования и сушки. Допускается частично заменять асбест минеральной ватой, а цемент – известково-трепельным вяжущим веществом. Изделия в виде плит (1000х500х30 мм), скорлуп (длиной 500 мм при толщине 30–40 мм) и сегментов (длинной 500 мм при толщине 50–80 мм) вырабатывают по средней марок 400 и 450, прочностью при изгибе соответственно 0,2 и 0,25 МПа и теплопроводностью 0,08–0,09 Вт/(м•К). Используют для тепловой изоляции поверхностей промышленного оборудования и трубопроводов при температуре до 4500С. Из древесных заполнителей более перспективными являются отходы деревообработки. Древесные заполнители получают главным образом из отходов хвойных пород (ели, пихты, сосны и др.) и реже из отходов лиственных пород (осины, березы, бука и др.). Их подвергают предварительной подготовке с целью освобождения от загрязняющих примесей и получения частиц нужной формы (дробленка, стружки или древесная шерсть) и размеров. Кусковые отходы древесины перерабатывают в два этапа. Первичную переработку производят с помощью рубильных машин, в результате чего получают технологическую щепу в виде ромбовидных кусков с размерами по длине волокон древесины 10–40 мм. Щепа не пригодна для изготовления ИСК, так как является слишком крупной, и изделия с ней имеют большую пористость и низкую прочность. При вторичной переработке на молотковых мельницах (дробилках) и стружечных станках технологическую щепу превращают в дробленку и стружку. Кроме специально приготовленной стружки применяют также стружку и опилки от столярного и мебельного производства. Для древесностружечных плит, плит фибролита, теплоизоляционного материала используют стружку лиственных и хвойных пород. При изготовлении изделий с применением цемента стружки минерализуют раствором соли. Опилки в зависимости от характера распиловки разделяют на два основных вида – опилки от поперечной и продольной распиловки. При поперечной распиловки получаются более мелкие частицы с волокнистым строением. При продольной распиловке получают опилки кубовидной формы разных размеров – от крупных частиц (7 мм) до пылевидных. Средняя плотность древесины колеблется в широких пределах – от 380 до 1100 кг/м3. Пористость зависит от различных факторов – от крупности частиц, степени уплотнения и др. Древесные заполнители обладают значительным водопоглощением. Вода поглощается оболочками клеток древесины и капиллярами, т.е. полостями клеток, межклеточными пустотами, а также сосудами. Древесный заполнитель обладает также гигроскопичностью, причем при поглощении влаги древесина набухает, что сопровождается давлением разбухания. Набухание происходит при поглощении влаги оболочками клеток, которые при этом увеличиваются в объеме, тогда как поглощение влаги капиллярами древесины набухания не вызывает. При высыхании древесного наполнителя происходит уменьшение его объема (усушка). Это связано с испарением влаги из клеточных оболочек; при удалении ее из капилляров усушки не происходит. Частицы древесного заполнителя обладают упругостью, которая отрицательно влияет на эффект прессования изделий, поэтому заполнитель длительно увлажняют горячей водой. В результате частицы древесины размягчаются, становятся менее упругими и легче сжимаются при прессовании. 4. Стеновые материалы. Показатели их качества, технологические приемы повышения их эффективности Стеновые материалы классифицируются по виду изделий, назначению, виду применяемого сырья, способу изготовления, средней плотности, теплопроводности, прочности при сжатии и другим признакам. По виду изделий: кирпич одинарный 250?120?65 мм и утолщенный 250?120?88 мм; стеновые камни полномерные 390?190?188, 490?240?188, 380?190?288 мм; дополнительные (трехчетвертинки 292?190?188, 367?240?188, 292?190?298 мм); половинки 195?190?188, 245?240?188, 195?190?288 мм; мелкие блоки (массой до 40 кг); крупные блоки (массой до 3 т. и толщиной 40…60 см); панели (однослойные толщиной 20…40 см); многослойные (толщиной 15…30 см). длина панелей 6,3; 1,5; 0,75 м; высота кратна 0,6 и обычно составляет 1,2 и 1,8 м. По назначению: наружные и внутренние стены, перегородки. По виду применяемого сырья: минеральные (кирпич, газобетонные изделия и др.); органические (стеновые изделия из арболита, древесно- и лигноминеральные камни). По способу изготовления: получаемые методом литья, пластического формования; методом полусухого прессования, вибрирования, выпиливания из горных пород, сборки стеновых конструкций. По способу твердения: безобжиговые, подразделяющиеся на материалы, твердеющие в нормальных условиях, при повышенной температуре, при повышенных температуре и давлении (бетоны на пористых заполнителях, ячеистые бетоны? Силикатный кирпич и др.); обжиговые: кирпич и камни керамические. По величине средней плотности: особо легкие – величина средней плотности – до 600; легкие – 600…1300; облегченные – 1300…1600 кг/м3. По теплопроводности: низкой теплопроводности с величиной теплопроводности до 0,06; средней – до 0,018; высокой – более 0,21 Вт/(м•0С). По прочности на сжатие (марка): каменные стеновые материалы высокой, средней и низкой прочности (таблица 1). По способу возведения: сборные, монолитные и сборно-монолитные. По конструкции: однослойные и многослойные. По характеру выполнения статической нагрузки: несущие, самонесущие, ненесущие. По огнестойкости: несгораемые (не воспламеняются, не тлеют, не обугливаются); трудносгораемые (воспламеняются, тлеют, продолжают гореть при наличии пламени); сгораемые (воспламеняются, тлеют и горят после удаления огня). Таблица 1. Марка стеновых каменных материалов Изделия Марка (прочность на сжатие, кг/м2) Высокая Средняя Низкая Керамический кирпич полнотелый 300, 250, 200 150, 125 100 75 Кирпич и камни керамические, силикатные пустотелые 250, 200, 150 125, 100 75 Камни и блоки мелкие бетонные 250, 200, 150,100 75, 50 35, 25 Блоки мелкие: из ячеистого бетона из горных пород 200, 150, 100 400, 300, 250 75, 50 150, 125, 100, 75 35, 25 50, 35, 25, 10 Наружные несущие стены – наиболее сложная конструкция издания. Они подвергаются многочисленными и разнообразным силовым и природным воздействиями. Выполняя несколько основных функций: теплоизоляционную, звукоизоляционную, несущую, стена должна отвечать требованиям по долговечности, огнестойкости, обеспечивать благоприятный температурный режим, обладать декоративными качествами, защищать помещения от неблагоприятных внешних воздействий. Одновременно она должна удовлетворять общетехническим требованиям минимальной материалоемкости, а также экономическим условиям. При оценке стеновых конструкций особое внимание уделяется проблеме долговечности. Преимуществом однослойной стены является определенность в отношении ее долговечности. Долговечность многослойной стены с эффективным утеплителем будет лимитироваться долговечностью утеплителя, которая значительно меньше, чем у конструкционного материала. Повышение срока эксплуатационной надежности (долговечности) теплоизоляционного материала в структуре стены является залогом увеличения долговечности многослойной многослойной конструкции в целом. На каждый вид или группу стеновых материалов утверждены государственные стандарты (ГОСТы) или технические условия (ТУ), в которых отражены требования, предъявляемые к материалам, и методы их испытания. Кирпич и камни керамические должны отвечать требованиям ГОСТ 350–95 «Кирпич и камни керамические. ТУ». Наиболее распространенными являются: кирпич полнотелый и дырчатый размером 250?120?65 мм; кирпич утолщенный – 250?120?88 мм; камни керамические – 250?120?138 мм. Стеновые панели. По конструктивному решению различают панели: – однослойные из легких бетонов; – трехслойные, изготовляемые из тяжелого или легкого бетона с внутренним теплоизоляционным слоем; – многослойные с применением утеплителей и защитным декоративным экраном. Строительно-эксплуатационные свойства стеновых материалов и изделий. Средняя плотность ?m, кг/м3, – физическая величина, определяемая отношением массы материала ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты: ?m = me/V, где me, V – масса и объем материала в сухом состоянии. Величина средней плотности изменяется в зависимости от пористости и влажности материала и используется для расчета его пористости, теплопроводности, теплоемкости, прочности, а также для расчетов складов, грузоподъемных и транспортных операций. Для стеновых изделий желательна наименьшая величина средней плотности при требуемой прочности. Показатель средней плотности составляет: для изделий стеновой керамики – 1400…1600; легких бетонов на пористых заполнителях – 950…1400; поризованной керамики и ячеистых бетонов – 400..800; древесно- и лигноминеральных изделий – 1000…1400 кг/м3. Для сыпучих материалов (вспученный перлит и вермикулит, керамит, аглопорит, топливный шлак и др.), применяемых для теплоизоляционных засыпок, величина насыпной плотности составляет 250…800 кг/м3. Пористость П, %, – степень заполнения объема материала порами: П = (1 – ?m/?) 100, где ?, ?m– соответственно истинная и средняя плотность, кг/м3 (т/м3). Величина общей пористости для распространенных стеновых материалов составляет: силикатного кирпича – 10…15, керамического кирпича – 25…35, легких бетонов – 55…85%. Для стеновых материалов, с позиции обеспечения теплоизоляционных свойств, рекомендуют замкнутые мелкие поры, равномерно распределенные по всему объему материала. От характера пор также зависит морозостойкость изделий, желательно наличие пор с сообщающимися резервными микропорами. Пустотность Пу, %, – степень заполнения объема материала технологическими пустотами. Пустоты (воздушные прослойки) в структуре стеновых изделий создаются как технологическими, так и конструкторскими способами. Объем пустот в пустотелом керамическом кирпиче колеблется в пределах 13…33%, керамических камнях – 25…40%, силикатном кирпиче – 20…40%, стеновых камнях – 25…30%, крупнопористом бетоне – 40…60%. Влажность материала определяется содержанием влаги, отнесенной к массе материала в сухом состоянии. Влажность материала зависит как от самого материала (пористость, гигроскопичность), так и от окружающей среды (влажность воздуха, наличие контакта с водой). Для стеновых материалов показатель отпускной влажности составляет: для пено – газобетона – 15…35; арболита – 20.35; керамзитобетона – 15…18; древесноминеральных блоков – 7…8%. Гигроскопичность – свойство пористых материалов поглощать определенное количество воды при повышении влажности окружающего воздуха. Гигроскопическая влажность составляет: для древесины – 12…18, ячеистых бетонов – до 20%, арболита – 10…15, керамических стеновых материалов – 5…7%. Капиллярное увлажнение – способность материалов поглощать влагу в результате подъема ее по капиллярам. Возможность увлажнения за счет капиллярного всасывания необходимо учитывать при эксплуатации стеновых изделий, особенно в цокольной части зданий. Капиллярное увлажнение уменьшают или предотвращают устройством гидроизоляционного слоя между фундаментом и стеновой конструкцией, а также гидрофобизацией последней. продолжение --PAGE_BREAK.

Еще работы по строительству.

Реферат по строительству.

Конструирование и расчет нежестких дорожных одежд.

3 Сентября 2013.

Реферат по строительству.

Проектування будівлі арматурного цеху.

3 Сентября 2013.

Реферат по строительству.

Санитарно-технические системы современных зданий.

Реферат по строительству.

Горячее водоснабжение жилого здания.

3 Сентября 2013.

скачать dle 11.3
Похожие статьи
Глава 3. Материалы для устройства кровли. В последнее время в качестве кровельного...
КАК ПОСТРОИТЬ БАНЮ И САУНУ: РЕКОМЕНДАЦИИ ПО СТРОИТЕЛЬСТВУ И ОТДЕЛКИ БАНИ И САУНЫ;...
ГОСТ 19010-82 Блоки стеновые бетонные и железобетонные для зданий. Общие технические...
Бетоны, их классификация, состав и области применения. Бетонной смесью называют...
Источники загрязнения воды. Основные источники загрязнения воды. Основой водных...
Комментарии
Классификация лестниц. Лестницы можно классифицировать по многим признакам: по...
В настоящий момент можно с уверенностью сказать о...
Классификация отделочных материалов. Важность...
Классификация основных строительных материалов. ...
Строительный рынок богат большим разнообразием напольных покрытий....
Наиболее востребованной услугой в настоящее время считается ремонт и установка замка...
Когда необходимо менять старые деревянные окна на новые пластиковые конструкции, каждый...